
SCIENTIA PLENA VOL. 8, NUM. 3 2012
www.scientiaplena.org.br

031301-1

An integrated development environment for the NS-2
Network Simulator

D. M. Oliveira; R. S. Cruz; R. J. P. B. Salgueiro; T. Rocha

Departamento de Computação, Universidade Federal de Sergipe, 49100-000, São Cristóvão-Se, Brasil

danilomo_@hotmail.com

ruironaldi@gmail.com

ricardo.salgueiro@gmail.com

tarcisio@dcomp.ufs.br

Simulation is one of the most important tools used for modeling and performance evaluation of computer
systems. Among the various options for languages and simulation packages available for the area of
computer networks, the NS-2 stands out for being the most popular open source tool used. However, the
NS-2 does not provide a good infrastructure for the development of simulation projects. This paper
proposes an integrated development environment (IDE) with a rich graphical interface that support
project creation, distributed or sequential execution and result project recovery under the form of charts.
The developed tool is used in a real project simulation performance evaluation of an access point for
mobile devices via a Bluetooth connection. With this case study, the benefits introduced with the use of
IDE in conjunction with the NS-2 are demonstrated.
Keywords: network simulation; NS-2; IDE

A simulação é uma das mais importantes ferramentas utilizadas para a modelagem e avaliação de
desempenho dos sistemas informáticos. Entre as diversas opções de idiomas e pacotes de simulação
disponíveis para a área de redes de computadores, o NS-2 se destaca por ser a ferramenta de código
aberto mais popular usado. No entanto, o NS-2 não oferece uma boa infra-estrutura para o
desenvolvimento de projetos de simulação. Este trabalho propõe um ambiente de desenvolvimento
integrado (IDE) com uma rica interface gráfica que a criação de apoio ao projecto, execução distribuída
ou seqüencial e recuperação de projeto resultado sob a forma de gráficos. A ferramenta desenvolvida é
usada em uma verdadeira avaliação de desempenho do projeto de simulação de um ponto de acesso para
dispositivos móveis através de uma conexão Bluetooth. Com este estudo caso, os benefícios introduzidos
com o uso de IDE em conjunto com o NS-2 são demonstradas.
Palavras-chave: simulação de rede; NS-2; IDE

1. INTRODUCTION

Systems Information and Communication Technology (ICT) are becoming increasingly
ubiquitous and present in people's lives and more and more people are depending on such
systems. In these scenarios, users and system administrators are interested on an efficient and
reliable operation. However, to ensure efficiency and reliability is not always an easy task,
considering that the development of computer systems is not trivial. It is widely common that
after a long cycle of analysis and implementation, the delivered systems do not operate with
satisfactory levels of performance. Modeling systems, using models of performance, reliability,
cost and availability, when applied to the early stages of development, helps to ensure that
systems are delivered to the users in accordance to non-functional requirements [8]. These
models also help to forecast the performance of the system at a future stage of greater use,
providing guidelines for the administrator to modify the system to ensure to users the same
conditions of use.

Simulation is a technique that consists in emulating the dynamic behavior of a system
through a computer program. In the context of modeling and performance evaluation,
simulation models are useful to gain a deeper knowledge about the system, conducting
experiments that would not be possible with the real system [7]. This knowledge can be useful
to compare design alternatives or to choose the value of a parameter that influences the system

D. M. Oliveira et al., Scientia Plena 8, 031301 (2012) 2

so that it can show its best performance. Once it is built and validated, a simulation model can
be helpful in answering questions like "What if ...", that is, checking the system behavior in
response to changes in system policies defined in the model, or changes in their configuration
parameters.

In the area of computer networks, NS-2 [9] became one of the most widely used network
simulators [5]. Thanks to its modular architecture, the code of the NS-2 can be extended with
modules developed by researchers. These modules can implement several protocol layers:
physical, data link, network, transport and application. Thus, the NS-2 has become one of the
best network simulation environments available. However, the NS-2 has only a command line
tool - the simulator itself - and not offer any support for managing simulation projects [10, 11].
This implies some degree of difficulty and low productivity for the developer who uses this
tool.

In this paper we propose an integrated development environment (IDE - Integrated
Development Environment) for the NS-2. This environment provides the following features:
creation of projects based on simulation models and their parameters, integration with a
persistence framework for storing and retrieving results, generation of reports and graphs about
simulation results, and integration with a distributed execution environment for independent
replication of simulations.

This paper is organized as follows. Section 2 discusses the simulation of computer networks
and the related work. Section 3 describes the proposed tool - the IDE for simulations using the
NS-2. In section 4, we show the case study designed to demonstrate the increased productivity
and functionality offered by the IDE. Finally, we present the concluding remarks of this paper
and present future work.

2. SIMULATION OF COMPUTER NETWORKS

Once simulation is chosen as modeling technique, the next decision to be made is about the
tools for the development of simulation models. There are three approaches to the development
of simulations: general purpose languages, simulation languages and simulation packages [6].
The advantage of using a general purpose language like C or Java, for example, is the flexibility
and speed of execution of the simulation. Another factor that may lead to the choice of a general
purpose language is the programmer's familiarity with the language. The disadvantage is the
lack of facilities for the simulation of systems, where everything must be implemented by the
programmer. Simulation languages are designed for computer simulation an offer features such
as scheduler, events and a simulation clock, in addition to providing facilities to collect statistics
of the simulation. Simulation packages are created to meet a specific problem domain. For
example, simulation packages for computer networks already have the implementation of
models of the physical layer of the TCP / IP and application protocols, allowing the user to
reuse these models and apply them to a particular network scenario.

Creating a simulation model of a computer network from scratch with a general purpose
language or simulation is a task that demands much effort. Fortunately, there are several tools
available that simulate the behavior of the TCP / IP and various emerging networking
technologies such as sensor networks, mesh networking and mobile IP. Several simulators have
been proposed, each with its own characteristics and advantages. The network simulator
OPNET [12] is quite popular and feature-rich, but it is a commercial tool. The NS-2 [9]
represents the open source and freely distributed network simulator quite popular among
researchers. Despite it is a relevant network simulator, the NS-2 do not offer support for
managing simulation projects. An alternative to NS-2 and OPNET is Omnet + + [13]. The
Omnet + + has free license for noncommercial purposes. This tool presents a greater support to
the development of simulation that the NS-2, which concentrates its efforts in network simulator
and simulation models, but is not concerned with the issue of supporting the developer of
simulations. Considering the popularity and relevance of the NS-2 among researchers, the
objective of this work is to provide an infrastructure for the NS-2, with the following features:

D. M. Oliveira et al., Scientia Plena 8, 031301 (2012) 3

organization of simulations, distributed execution, collecting results and generating reports and
graphics, embedded in an IDE.

The Network Simulator (version 2), better known as NS-2, is a network simulator based on
events that was built from the REAL network simulator in 1989. Since then, several researchers
and institutions such as the Defense Advanced Research Projects Agency (DARPA) and
National Science Foundation (NFS) contributed to its development. The NS-2 provides
mechanisms for simulations of wired and wireless networks, applications, traffic patterns,
routing algorithms, multicast protocols, etc. It is possible to model and estimate the performance
of computer networks through simulations and to validate protocols.

The NS-2 can be used as follows. The user creates a simulation script using the language
OTcl, where he declares the topology of the model and the network applications that run on this
topology and performs the necessary settings. He then gives that script to the simulator. The
script is processed by the OTcl interpreter, which instantiates the event scheduler and other
objects and run the simulation. At the end of the simulation, the descriptions of all the events in
the simulation are recorded in files. These files can be text-based or based on animation. The
first type is useful when you want to create graphics or perform statistical calculations on the
simulation results. The second type is given as input to the tool NAM (Network Animator),
which generates an animation of the simulation. Figure 1 describes the operation of the NS-2.

Figure 1: Overview of the functioning of the NS [4]

In a study of modeling and performance analysis, using the NS-2 differs from the scenario

described above. In this case, a model represented by a simulation script is created, and some
configuration parameters and the workload offered to the system are pending. A parameter is
associated with a list of values it can take. For each combination of parameter values, you can
run the simulation scenario and get the performance metrics to be investigated. These metrics
can be represented by the flow of input/output data in an application or network link, packet loss
rate, the delay that a packet suffers from the source node to destination node, etc.. In order to
ensure the accuracy of the simulation results, each individual simulation can be replicated
several times, keeping the same parameter values and using a random numbers generator.

Despite NS-2 is the most popular open source network simulator, it does not offer any tool
that facilitates the creation of simulation projects and extraction of its results in an automated
fashion. These tasks are delegated to the developer and they are usually performed through
scripts in bash, Perl or Python, which is are troublesome and error-prone. To overcome this
difficulty, we developed the NS-Facilities tool [10] - a framework for creating simulation
projects in NS-2. With this tool, we use a script of the NS-2 simulation with open parameters,
and a configuration file that defines the list of parameters and their values. For each
combination of parameters and their replication, the framework creates an instance of the stage
and performs the automated execution of all possible scenarios. The framework also makes the
extraction of the results and stores them in a relational database, facilitating later retrieval of
data. Figure 2 illustrates the operation of the NS-Facilities.

Another problem involved in using the NS-2 is the fact that the sequential execution of
independent replications can result a high computational cost, especially in more complex
projects. Unlike NS-2, independent replications could be performed on different machines,

D. M. Oliveira et al., Scientia Plena 8, 031301 (2012) 4

reducing the overall time for project execution. This approach is known in literature as MRIP -
Multiple Replications in Parallel [3]. The tool NS-DiS [11] is an extension of the tool NS-
Facilities that follows this approach. In Figure 3 we show the topology of the NS-DiS. Its
operation is described below.

• The user submits a project for distributed execution through the client module of the

application;
• The server accepts this submission and performs processing. It divides the project

into equal parts, based on the number of client nodes registered in the environment;
• The server distributes the shares among the slave nodes, which are machines that

offer the processing power to the server simulation;
• The slave nodes accept submissions from the simulation server, perform the

execution of the replication received, process and return its results to the server;
• Finally, the server stores the collected metrics in a relational database that can be

available for users to query later.

Figure 2: Operation of NS-Facilities

Figure 3: Topology of the distributed simulation environment NS-DiS[11]

D. M. Oliveira et al., Scientia Plena 8, 031301 (2012) 5

In order to provide easier to use the NS-DiS, we create an integrated development

environment that has a rich user interface, allowing more productive use of the NS-2 and NS-
DiS. This environment is detailed in the following section.

3. INTEGRATED DEVELOPMENT ENVIRONMENT FOR SIMULATION

An IDE (Integrated Development Environment) is a tool that incorporates many features
required to build software in a particular language. The main features offered by an IDE are the
program editor, execution environment, debugging environment, project management, among
others that vary from IDE to IDE. To facilitate the use of NS-2 and allow the development of
more complex simulation projects, we developed an integrated development environment for
NS-2. Our IDE is built on the Netbeans platform [2] which is a RCP (Rich Client Platform) to
build more sophisticated desktop applications. This platform defines a modular architecture for
the application and allows the reuse of components of the Netbeans IDE (which was built on the
Netbeans platform).

In Figure 4 we show the main screen of the IDE. It is composed by a toolbar at the top of the
application, an editor at the center and small docked windows around it. The toolbar of the IDE
is divided into categories related to the various features of the IDE. These categories are
described below.

• Project - This category contains commands related to creating, configuring and running

local simulation projects. A project open or newly created will be shown in the
“Project” box (Figure 5 (a)). Each project consists of one or more models, which consist
of a parameterized simulation scenario. The scenario is described by a simulation script
in NS-2 OTcl language and can be edited in the central window of the IDE. The
parameters of the scenario are displayed in the “Parameters” (Figure 5 (b)) box. The
values that the parameter can take are set in the “Properties” box (Figure 5 (c)).

• Distributed Environment - In the box “Distributed Environment” (Figure 6 (a)),

commands related to the distributed simulation environment are located. The button
“Connect” can be used to connect or disconnect the nodes of the environment. The
environment is shown in the side window in Figure 6 (b). For each node that
symbolizes a slave node, there is an option to view the current situation of the node, if it
is busy or not and how many replications it keeps in its queue. There is also the option
to terminate the slave node program, or even suspend the entire environment, ending the
simulation server and all its slave nodes at once. The other two buttons on the toolbar
allows you to submit the project to the remote environment and to monitor its running.

D. M. Oliveira et al., Scientia Plena 8, 031301 (2012) 6

Figure 4: Screenshot of simulation IDE

 (a) Project explorer (b) Parameters inspector (c) Properties

Figure 5: Project explorer windows

 (a) Distributed environment Toolbar (b) Distributed environment window

Figure 6: Distributed environment toolbar and window

• Charts - Simulation models are useful to help managers and system
administrators to make decisions about system design and resource policies. In order to
support the decision making process, the results should be presented clearly and
understandably. The results are presented under the form of charts and tables. This is an
additional stage in the project that requires practice with the graphic tools and word
processing, which can be annoying and repetitive. Therefore, our IDE offers a module
to automate the generation of graphics. The functioning of this module is described in
Figure 7. The module takes the formula of the graph as input such as its curves, labels
and variables, and the input data that are the results of the simulations. It generates a as
a result a chart with this data, in accordance to the formula specifications. In Figure 8,

D. M. Oliveira et al., Scientia Plena 8, 031301 (2012) 7

the main step of graphing functionality is displayed. Figures 10 and 11show examples
of generated graphics with this module.

Figure 7: Chart generator module behavior

Figura 8: Chart generator wizard

4. CASE STUDY

The case study consists of a real NS-2 application built using the IDE and its features,
demonstrating its effectiveness in increasing productivity. Bluetooth network was the test
scenario. Widespread in mobile phones, they can offer Internet connectivity at a reduced cost, as
described in [1]. The objective of this case study is to investigate the feasibility of this scenario,
and examine the maximum data throughput that a Bluetooth proxy server is able to offer its
customers while guaranteeing a acceptable delay.

The experiment consists of a scenario with a server node and one or more client nodes. Each
client sends requests to the server at certain intervals of time, through a Bluetooth connection. In
this request it specifies the number of bytes it wishes to receive in the reply message. This
process is illustrated in Figure 9.

D. M. Oliveira et al., Scientia Plena 8, 031301 (2012) 8

Figure 9: Client server interaction over a bluetooth connection

The simulated scenario has three parameters:

• time interval - Time interval between requisitions;
• nodes count - Number of client nodes. This can be at most 7, because 8 nodes (1

master, 7 slaves) is the maximum that a Bluetooth piconet can support;
• packet size – The response message length.

Table 1 shows the levels on which each parameter varies in the experiments.

Table 1: Parameters and levels
Parameter Levels

Time_interval 1, 3, 5, 7, 9 (seconds)
Node_count 1, 2, 3, 4, 5, 6, 7
Packet_size 10000, 20000, 30000, 40000, 50000 (bytes)

A full factorial design was constructed. Each element of the Cartesian product of parameter

levels generates a measurement, and each measurement was repeated five times. For each
replication the following performance results were collected:

• Average delay - The average delays of all packets sent. Each delay is measured by

calculating the difference between the time the request message is sent and the time
the response is received;

• Out throughput – The throughput in the server.

4.1. Results

To investigate the impact of throughput on the server on the value of average delay on the

clients, two charts were created. The first (Figure 10) is a graph that shows the throughput
depending on the size of the response message returned by the server, into a scenario with seven
active clients. We measured out throughput for each value of time interval parameter and
displayed as curves in the chart. While decreasing time interval and increasing the size of the
reply message we increase the out throughput. Our goal is to find a value for the flow that
implies an acceptable delay on the client. In Figure 11 we display a chart that presents the same
variable (size of the response message) based on the average delay, also into a scenario with
seven client nodes. The curve which shows the measurements with the interval between
requests defined as 1 second displays very large delays, sometimes exceeding the value of 40
seconds. We observed that the delay reaches very high values for a 3 seconds time interval and
the message size response is greater than 30,000 bytes.

D. M. Oliveira et al., Scientia Plena 8, 031301 (2012) 9

Figure 10: Out throughput vs. Response packet length

Figure 11: Average delay vs. number of clients

Assuming we determine the maximum acceptable delay value to 2 seconds we can determine

the maximum throughput with the SQL query listed in Figure 12. This query returned a value of
60,422 B/s, which means that if the out throughput on the server exceeds this limit, the delay
will surpass the time of 2 seconds.

Figure 12: Query of the higher throughput from which average delay is less than 2 sec.

D. M. Oliveira et al., Scientia Plena 8, 031301 (2012) 10

5. CONCLUSIONS

System simulation is an important tool for performance evaluation in computer networks.
Among the simulation tools available for this purpose, the NS-2 stands out by its modular
architecture and the wide range of simulation models available, making it the network simulator
chosen by several researchers in their projects. However, the NS-2 still has limitations on the
infrastructure to support the needs of simulation developers. We have seen that a simulation
study not only uses a single simulation scenario, it’s generally based on an experimental project
that defines several specific instances of simulation. As the NS-2 provides no such support, the
developer needs to develop a series of scripts for organizing the experiments, performing the
automated execution, carrying out the processing of trace files generated, summarizing this data,
and generating charts.

This paper presents a versatile integrated development environment for the NS-2 which aims
to overcome the limitations described above. The IDE has the following features: a project
manager that allows you to create simulation models and describe their parameters, local
execution of the project, executing the project in a distributed environment, monitoring of
distributed environment, and recovery of the simulation results through queries and charts. With
the case study, we found that the use of IDE in conjunction with the NS-2 and NS-DiS allows
the project developer to concentrate on the details of the modeled system and the experiments,
avoiding the trouble of creating routines to perform the tasks related to configuration
parameters, automatic execution of the replication, storage and graphing results. In conjunction
with the distributed environment, the IDE provides greater productivity and allows more
complex problems are developed.

1. AULETTA, V.; BLUNDO, C.; CRISTOFARO, E. D. Http over bluetooth: a j2me experience. In:
IARIA. The International Journal On Advances in Telecommunications. [S.l.: s.n.], 2008.

2. BOUDREAU, T.; TULACH, J.; WIELENGA, G. Rich client programming: plugging into the
netbeans platform. Prentice Hall Press Upper Saddle River, NJ, USA, 2007.

3. BRUSCHI, S. M.; SANTANA, R. H. C.; SANTANA, M. J.; AIZA, T. S. An automatic distributed
simulation environment. In Proceedings of the 36th conference on Winter simulation (WSC '04).
Winter Simulation Conference, 2004

4. CHUNG J.; CLAYPOOL, M. Ns by example. Online tutorial. December 2008.
5. ISSARIYAKUL, T.; HOSSAIN, E. Introduction to Network Simulator NS2. [S.l.]: Springer,2009.

ISBN 978-0-387-71759-3.
6. JAIN, R. The art of computer systems performance analysis: techniques for experimental design,

measurement, simulation, and modeling. [S.l.]: Wiley New York, 1991.
7. LAW, A.; KELTON, W. Simulation modeling and analysis. [S.l.]: McGraw-Hill New York, 1991.
8. MENASCE, D. et al. Performance by design: computer capacity planning by example. [S.l.]:

Prentice Hall, 2004
9. NS-2. Official website of the project. Available at [http://nsnam.isi.edu/nsnam]. 2008.
10. OLIVEIRA, D.; CRUZ, R.; SALGUEIRO, R. Ns-facilities - uma ferramenta de apoio ao

desenvolvimento de simulações. In: ESCOLA REGIONAL DE COMPUTAÇÃO BAHIA
ALAGOAS SERGIPE. WTICG 2010. [S.l.: s.n.], 2010.

11. OLIVEIRA, D.; SALGUEIRO, R.; ROCHA, T. Ns-DiS: um ambiente de simulação distribuído para
o ns-2. In: FÓRUM INTERNACIONAL DE SOFTWARE LIVRE. Workshop de Software Livre.
[S.l.: s.n.], 2011.

12. OPNET MODELER. Official website of the project. Available at [http://www.opnet.com], 2009.
13. VARGA, A. et al. The OMNeT++ discrete event simulation system. In: Proceedings of the

European Simulation Multiconference (ESM 2001). [S.l.: s.n.], 2001. p. 319–324.

