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Este trabalho apresenta uma abordagem baseada em redes neurais artificiais para a previsão do fenômeno 

El Niño–Oscilação Sul (ENOS), utilizando como variável-alvo o Índice Oceânico de El Niño (ONI). Foram 

avaliadas quatro arquiteturas — Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long 

Short-Term Memory (LSTM) e CNN-LSTM — em horizontes de previsão definidos por defasagens 

temporais (lags) de 1 a 6 meses. O objetivo foi analisar o impacto do tempo de antecedência sobre a acurácia 

das previsões e delimitar o horizonte de utilidade prática dessas estimativas. As variáveis preditoras incluem 

indicadores oceanográficos e atmosféricos consolidados na literatura: anomalias de Temperatura da 

Superfície do Mar (TSM) na região Niño 3.4, Índice de Oscilação Sul (SOI), Índice Multivariado do 

El Niño versão 2 (MEI.v2) e o Padrão de Oscilação do Pacífico Norte-Americano (PNA). Para evitar 

vazamento de dados, adotou-se a separação temporal entre os conjuntos de treino e teste, sem 

embaralhamento. Os resultados indicam que, para lag 1, os modelos alcançam coeficientes de determinação 

(R²) superiores a 0,94, demonstrando elevada capacidade de previsão em curto prazo. Com o aumento do 

lag, observa-se queda progressiva no desempenho, atingindo R² abaixo de 0,20 para lag 6. A análise 

comparativa, por meio de um score unificado baseado em R², MAE e RMSE normalizados, evidenciou a 

robustez da MLP em diferentes janelas temporais, embora a LSTM tenha se destacado em horizontes mais 

longos. Os resultados destacam o potencial das redes neurais na captura de padrões climáticos de curto 

prazo e suas limitações para previsões em escalas temporais estendidas. 
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This study presents an approach based on artificial neural networks for forecasting the El Niño–Southern 

Oscillation (ENSO) phenomenon, using the Oceanic Niño Index (ONI) as the target variable. Four neural 

network architectures were evaluated — Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), 

Long Short-Term Memory (LSTM), and CNN-LSTM — across forecasting horizons defined by temporal 

lags ranging from 1 to 6 months. The main objective was to analyze the impact of lead time on prediction 

accuracy and to determine the practical time limit of these estimates. The predictor variables include  

well-established oceanographic and atmospheric indicators: Sea Surface Temperature (SST) anomalies in 

the Niño 3.4 region, the Southern Oscillation Index (SOI), the Multivariate El Niño Index version 2 

(MEI.v2), and the Pacific North American Pattern (PNA). To prevent data leakage, a temporal split was 

applied between the training and testing sets, without shuffling. The results indicate that, for lag 1, the 

models achieved coefficients of determination (R²) above 0.94, demonstrating high short-term forecasting 

capability. However, as the lag increased, a progressive decline in performance was observed, reaching R² 

values below 0.20 for lag 6. A comparative analysis using a unified score based on normalized R², MAE, 

and RMSE revealed the robustness of MLP across different temporal windows, although LSTM 

outperformed in longer-term horizons. These results highlight the potential of neural networks in capturing 

short-term climate patterns, while also emphasizing their significant limitations for extended forecasting 

timeframes. 
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1.  INTRODUÇÃO 

A variabilidade climática interanual mais proeminente do planeta é impulsionada pelo El 

Niño–Oscilação Sul (ENOS), fenômeno originado no Pacífico tropical a partir da interação 

oceano–atmosfera [1] e com implicações globais nos padrões de precipitação, temperatura e 
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circulação atmosférica [2, 3]. Suas fases extremas, El Niño (aquecimento anômalo do Pacífico 

leste e central) e La Niña (resfriamento anômalo), afetam eventos extremos, produtividade 

agrícola, recursos hídricos e energia em escala global [4, 5]. No Brasil, a capacidade de prever o 

estado do ENOS com antecedência de meses é estratégica para setores como agricultura, energia 

elétrica e gestão de riscos de desastres [6]. 

Apesar de décadas de pesquisa, a previsão do ENOS ainda é um grande desafio [6] e tem papel 

estratégico no planejamento dos setores motrizes dos países, como o Brasil, uma vez que eventos 

El Niño intensos provocam impactos bilionários para o agronegócio [7], só para citar alguns. 

Modelos acoplados oceano-atmosfera baseados em princípios físicos têm sido a principal 

metodologia utilizada para a previsão operacional, mas sofrem com os vieses inerentes ao modelo, 

requisitos computacionais intensivos e limitações na representação de processos em pequena 

escala [8]. Modelos estatísticos, embora computacionalmente eficientes, enfrentam desafios na 

capacidade de capturar a complexa não-linearidade das interações oceano-atmosfera e a transição 

entre as fases do ENOS. Um desafio particular é a persistente "barreira de previsibilidade da 

primavera" [9], que é um período durante o primeiro semestre do ano quando a habilidade 

preditiva diminui drasticamente, tornando a previsão para o segundo semestre (crucial para o 

desenvolvimento de El Niño/La Niña) uma tarefa de grande dificuldade. 

Considerando o desafio da barreira de previsibilidade persistente, é importante que a previsão 

tenha antecedência de três a seis meses, o que permite a possibilidade de planejamento por setores 

sensíveis a variações climáticas causadas pelo fenômeno [5, 10]. Por exemplo, a definição da 

safra e do plantio no Centro-Oeste e Sudeste pode ser adaptada às previsões do ENOS; no setor 

elétrico, o Operador Nacional do Sistema (ONS) pode ajustar o despacho térmico frente aos 

cenários de redução na capacidade de geração de energia das centrais hidrelétricas [11]. Assim, 

melhorar os modelos preditivos do ENOS traz benefícios econômicos e estratégicos tangíveis. 

O ENOS é parte de um sistema interconectado, onde a interação entre o oceano Pacífico 

Equatorial e a atmosfera é mediada por mecanismos como a circulação de Walker, as ondas de 

Kelvin e Rossby, e processos de ressurgência; esses mecanismos contribuem para a 

retroalimentação positiva durante o desenvolvimento dos eventos El Niño [12] e entendê-los é 

fundamental para que modelos baseados em aprendizado de máquina consigam extrair padrões 

climáticos robustos e significativos. 

A caracterização operacional do ENOS (El Niño–Oscilação Sul) ocorre, principalmente, via o 

Índice Oceânico de El Niño (ONI). Esse índice é calculado a partir da anomalia da temperatura 

da superfície do mar (TSM) na região denominada Niño 3.4 (latitude 5°N–5°S, longitude 120°W–

170°W). O ONI é obtido como uma média móvel de três meses consecutivos dessas anomalias e 

comparado com uma série climatológica de 30 anos, atualizada periodicamente. Esse índice é 

amplamente utilizado por agências meteorológicas, como a National Oceanic and Atmospheric 

Administration (NOAA), para indicar não apenas a presença do fenômeno, mas também sua 

intensidade e duração [13]. A Figura 1 ilustra a série histórica do índice ONI, com destaque para 

as classificações de intensidade dos eventos El Niño e La Niña.  

 
Figura 1 – Série histórica do Índice Oceânico de El Niño (ONI) e faixas de intensidade dos eventos 

ENOS.  

Embora o ENOS seja fortemente influenciado por mecanismos internos da interação oceano-

atmosfera, estudos têm demonstrado que situações externas — como a variabilidade da irradiância 

solar (Total Solar Irradiance – TSI) — também podem modular a distribuição de energia na 

superfície dos oceanos tropicais. Essa modulação atua de forma indireta sobre processos como 
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ressurgência, convecção atmosférica e deslocamento da termoclina, alterando o padrão sazonal e 

decadal de fenômenos como o El Niño [14, 15]. A absorção de radiação solar pelos oceanos, 

condicionada ainda por fatores como albedo e cobertura de nuvens, compõe o pano de fundo 

energético sobre o qual as anomalias do ENOS se desenvolvem. 

Apesar da relevância do fenômeno, prever com antecedência suas variações continua sendo 

um dos grandes desafios da climatologia moderna. A dinâmica do ENOS envolve múltiplos 

fatores oceânicos e atmosféricos que interagem criando um sistema não linear e, muitas vezes, 

caótico [16]. Essa complexidade faz com que os modelos estatísticos tradicionais, como 

regressões lineares ou modelos ARIMA, não sejam eficientes o suficiente, especialmente para 

projeções de médio e longo prazo [17]. 

Nesse contexto, abordagens baseadas em inteligência artificial têm ocupado espaço, sobretudo 

pelo uso de redes neurais artificiais (RNAs), capazes de revelar relações complexas e não lineares 

em séries temporais climáticas [18, 19]. Trabalhos recentes mostram que arquiteturas como 

LSTM e CNN-LSTM apresentam desempenho promissor na previsão do ENOS, especialmente 

para horizontes de curto prazo [20, 17].  

A contribuição desses métodos está em explorar padrões ocultos de memória temporal e 

espacial que métodos estatísticos clássicos não capturam. Ainda assim, a literatura reforça que o 

ganho tende a ser limitado em defasagens mais longas, enfatizando a importância de se investigar 

os limites práticos de aplicação dessas arquiteturas [6, 21]. 

Assim, este trabalho realiza uma análise comparativa entre diferentes arquiteturas de redes 

neurais — MLP, RNN, LSTM e CNN-LSTM — aplicadas à previsão do índice ONI, 

considerando horizontes de 1 a 6 meses (lags). Objetiva-se, pois, compreender o limite temporal 

de acurácia dessas arquiteturas, fornecendo subsídios para aplicações práticas em setores 

vulneráveis às variações climáticas associadas ao ENOS. 

2.  MATERIAL E MÉTODOS 

A metodologia compreende sete etapas principais: (i) coleta e organização dos dados 

climáticos, (ii) normalização das séries, (iii) criação de defasagens temporais (lags), (iv) análise 

de correlação entre variáveis, (v) definição das arquiteturas de rede, (vi) treinamento dos modelos 

e (vii) avaliação de desempenho. 

Os dados utilizados foram obtidos de fontes públicas da NOAA – National Oceanic and 

Atmospheric Administration, referência internacional no monitoramento do ENOS. Foram 

consideradas séries mensais iniciadas em janeiro de 1950, contendo indicadores oceânicos e 

atmosféricos amplamente reconhecidos pela literatura: anomalias da temperatura da superfície do 

mar (SST) nas regiões Niño 3, Niño 3.4 e Niño 4, Índice de Oscilação Sul (SOI), Índice 

Multivariado do El Niño (MEI.v2), radiação de ondas longas (OLR) e o Padrão de Oscilação do 

Pacífico Norte-Americano (PNA). A variável-alvo do modelo é o próprio ONI, calculado com 

base na média móvel trimestral das anomalias de SST na região Niño 3.4. 

Todas as variáveis foram normalizadas utilizando Min-Max Scaling com base no conjunto de 

treinamento. A divisão entre treino e teste seguiu proporção de 80/20, respeitando a ordem 

cronológica das observações para evitar vazamento de dados. 

Para incorporar o efeito da memória climática e simular diferentes horizontes de previsão, 

foram criadas defasagens de 1 a 6 meses (lags de 1 a 6) para cada variável preditora. Com isso, 

cada modelo passou a prever o valor atual do ONI com base nas condições climáticas de 1 a 

6 meses anteriores, permitindo investigar o desempenho das redes em diferentes janelas de 

antecipação. 

A partir das séries defasadas, foi conduzida uma análise de correlação de Pearson entre as 

variáveis explicativas e o ONI. Inicialmente, foi gerada uma matriz completa contendo todas as 

variáveis. Em seguida, aplicou-se um filtro considerando apenas aquelas com coeficiente de 

correlação (|r|) maior ou igual a 0,80 em relação ao ONI. Essa filtragem teve por objetivo reduzir 

a dimensionalidade do problema e manter apenas os preditores com maior relevância estatística. 

A Figura 2 ilustra essa seleção, com a matriz original à esquerda e a versão filtrada à direita. 
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Figura 2 – Matriz de correlação de Pearson entre as variáveis climáticas disponíveis na série histórica 

(à esquerda) e a matriz filtrada com variáveis que apresentaram correlação com módulo igual ou 

superior a 0,80 em relação ao ONI_target (à direita). As variáveis selecionadas na matriz da direita 

foram utilizadas como entradas nos modelos de previsão do ENOS, por apresentarem associação 

estatística significativa com o índice ONI. 

As redes neurais testadas foram: Perceptron Multicamadas (MLP), Rede Neural Recorrente 

(RNN), Rede Neural LSTM (Long Short-Term Memory) e uma arquitetura híbrida CNN-LSTM. 

A MLP foi composta por três camadas densas com 128, 64 e 1 neurônio. A RNN utilizou uma 

camada recorrente simples com 64 unidades, seguida de saída densa. A LSTM foi estruturada 

com 64 unidades e dropout de 0.2, enquanto a CNN-LSTM combinou uma convolução 1D 

(64 filtros, kernel 2x1), camada de pooling e uma LSTM final. As arquiteturas foram pensadas 

para capturar padrões de curto e longo prazo (RNN/LSTM), além de estruturas locais relevantes 

(CNN-LSTM). 

A Figura 3 ilustra essas arquiteturas, destacando as camadas utilizadas em cada modelo e a 

transformação das entradas climáticas ao longo da rede. 

 
Figura 3 – Arquiteturas das redes neurais artificiais utilizadas: LSTM, RNN, MLP e CNN-LSTM. As 

caixas indicam as camadas de cada modelo, com os respectivos formatos de entrada e saída para o 

conjunto de dados do ENOS. 

Todos os modelos foram implementados em Python 3.10, utilizando o ambiente Jupyter 

Notebook, com a biblioteca TensorFlow 2.15 e sua API Keras. O monitoramento do treinamento 

foi realizado com o TensorBoard, possibilitando o acompanhamento das métricas de perda e 

validação ao longo das épocas. 

O processo de treinamento respeitou a ordem temporal dos dados (sem embaralhamento) e foi 

realizado por até 100 épocas com batch size de 16. A função de ativação nas camadas ocultas foi 
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ReLU, com saída linear. O otimizador utilizado foi o Adam, com taxa de aprendizado padrão de 

0,001. A função de perda adotada foi o erro quadrático médio (MSE). 

O desempenho dos modelos foi avaliado com base em três métricas complementares: Erro 

Absoluto Médio (MAE), Raiz do Erro Quadrático Médio (RMSE) e Coeficiente de Determinação 

(R²). Além disso, as séries previstas foram comparadas graficamente com os valores observados 

do ONI para análise qualitativa da aderência dos modelos ao comportamento histórico do ENOS. 

3.  RESULTADOS E DISCUSSÃO 

Os modelos de redes neurais artificiais demonstraram comportamento consistente em relação 

à defasagem temporal (lag), revelando uma tendência clara: quanto menor o horizonte de 

previsão, maior a acurácia preditiva. Essa relação inversa entre desempenho e lag foi observada 

de forma sistemática em todas as arquiteturas testadas (MLP, LSTM, RNN e CNN-LSTM), com 

destaque para os lags 1 e 2, que apresentaram os melhores resultados em termos de erro e 

correlação com a série real. 

Avaliando as curvas de perda durante o treinamento, é possível observar que todos os modelos 

convergiram rapidamente, estabilizando o erro a partir da 10ª época. A maioria manteve bons 

níveis de generalização, com perdas de validação próximas das perdas de treinamento. A MLP, 

em especial, apresentou curvas mais regulares e com menor oscilação mesmo em lags mais 

longos, o que ajuda a explicar seu bom desempenho global. Esse comportamento pode ser 

visualizado na Figura 4, que exibe as curvas de perda de treino e validação para cada arquitetura 

e lag. 

 
Figura 4 – Curvas de perda (erro quadrático médio) para treino e validação ao longo das épocas, para 

os modelos MLP, LSTM, RNN e CNN-LSTM, com defasagens variando de 1 a 6 meses.  

Outro aspecto relevante observado nos experimentos é a ocorrência de overfitting em lags 

mais longos (≥ 4 meses). As curvas de perda mostram que, embora o erro de treinamento continue 

diminuindo, a perda de validação estabiliza ou até aumenta, sugerindo que os modelos passam a 

memorizar padrões espúrios da série histórica sem capacidade de generalização. Esse 

comportamento é consistente com a literatura, que destaca a redução da previsibilidade em 

horizontes mais distantes devido ao caráter caótico da interação oceano–atmosfera [6, 21]. Além 

disso, a chamada barreira de previsibilidade da primavera [9] contribui para agravar essa 
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limitação, tornando a acurácia dos modelos significativamente menor em lags superiores a três 

meses. Dessa forma, os resultados obtidos neste estudo reforçam que as redes neurais artificiais 

são eficazes no curto prazo, mas enfrentam sérios desafios quando aplicadas a previsões de médio 

a longo prazo. 

Ao analisarmos diretamente as métricas de desempenho (MAE, RMSE e R²), evidencia-se a 

superioridade da MLP nos lags mais curtos. No lag 1, esse modelo alcançou R² de 0,95, com 

MAE de 0,164 e RMSE de 0,209. Também teve o melhor desempenho no lag 2 (R² = 0,83) e no 

lag 5 (R² = 0,32). O LSTM, por sua vez, mostrou estabilidade em lags mais avançados, liderando 

nos lags 4 (R² = 0,52) e 6 (R² = 0,20). Já o RNN obteve o melhor resultado apenas no lag 3 (R² = 

0,64), mas foi também o único modelo com resultado negativo em R² no lag 6 (–0,04), indicando 

limitação para previsões distantes. A Figura 5 sintetiza esses resultados quantitativos e permite a 

comparação direta entre arquiteturas. 

 
Figura 5 – Desempenho dos modelos de redes neurais artificiais com base em três métricas (MAE, RMSE 

e R²) para os diferentes lags de previsão do índice ONI.  

Para compreender o comportamento qualitativo das previsões, a Figura 6 compara as séries 

previstas e observadas do índice ONI nos lags 1 e 6. No horizonte mais curto, os modelos são 

capazes de capturar com precisão picos e vales da série, inclusive eventos extremos como os 

El Niños de 1982–1983, 1997–1998 e 2015–2016. No lag 6, entretanto, as previsões tornam-se 

mais suaves, com perda de sincronia e redução da amplitude, dificultando a utilização em sistemas 

de alerta precoce. 

 
Figura 6 – Comparação entre os valores observados e previstos do índice ONI para os lags 1 e 6. 

Modelos reproduzem bem a série no curto prazo, mas perdem precisão e amplitude nas previsões de 

longo prazo. 

Como forma complementar de avaliação, a Figura 7 apresenta os modelos com melhor 

desempenho em cada lag, segundo três métricas distintas: maior R², menor MAE e menor RMSE. 

Essa abordagem permite identificar quais arquiteturas se destacaram em cada horizonte de 
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previsão e sob diferentes critérios de desempenho. Nota-se que a MLP apresentou o melhor 

coeficiente de determinação (R²) nos dois primeiros lags, demonstrando forte capacidade de ajuste 

em previsões de curto prazo. Já o modelo LSTM destacou-se principalmente em lags mais longos, 

sendo o mais preciso em termos de erro médio absoluto (MAE) e raiz do erro quadrático médio 

(RMSE) no lag 6. A alternância entre os modelos, conforme a métrica e o horizonte considerado, 

reforça a importância de múltiplos critérios para uma avaliação equilibrada do desempenho 

preditivo. 

 
Figura 7 – Modelos com desempenho superior por métrica e horizonte de previsão (lag). Cada barra 

representa a arquitetura com melhor resultado em termos de R² (mais alto), MAE e RMSE (mais baixos) 

para cada valor de lag. A alternância entre modelos reflete variações no desempenho conforme a métrica 

adotada e o horizonte de previsão. 

Os resultados obtidos também encontram respaldo em outros estudos [21] que demonstraram 

que, mesmo com arquiteturas avançadas de deep learning, a previsibilidade do ENOS sofre forte 

limitação para horizontes superiores a seis meses. De forma semelhante, [6] revisaram o estado 

da arte e concluíram que a acurácia preditiva decai rapidamente com o aumento do lag, reforçando 

a dificuldade de superar a barreira de previsibilidade da primavera. Esses achados corroboram os 

resultados deste trabalho, que evidenciaram a queda acentuada no desempenho das redes neurais 

a partir do lag 4. Além disso, estudos como os de [3, 16] destacam que a intensificação do 

aquecimento global pode amplificar a frequência e a intensidade dos eventos extremos de ENOS, 

aumentando a importância de métodos preditivos robustos, mas também impondo novos desafios 

metodológicos. 

4.  APLICAÇÕES PRÁTICAS E LIMITAÇÕES 

A previsão dos eventos ENOS por redes neurais artificiais antecipa as variações no índice ONI 

e abre caminho para a construção de sistemas de suporte à decisão baseados em aprendizado de 

máquina. Assim, modelos de previsão podem ser incorporados a plataformas já consagradas como 

ANA, INMET, CPTEC etc., de forma que os mesmos seriam combinados com entradas de 

diferentes fontes climáticas. Essa integração tecnológica é relevante para órgãos de planejamento 

hídrico e meteorológico e, dessa forma, um sistema de alerta baseado em limites probabilísticos 

poderá permitir o rastreamento contínuo da evolução dos padrões oceânicos.  

Os modelos também podem ser adaptados para aplicações específicas por regiões, sendo 

treinados com dados localizados, o que ampliaria o uso em escala regional, como o gerenciamento 

de bacias hidrográficas, controle de queimadas, estimativa de produtividade agrícola sob 

influência do ENOS. 

Assim, ainda que os modelos aqui testados demonstrem bom desempenho em curto prazo, o 

uso operacional em horizontes longos exige cautela, seja pela necessidade de variáveis adicionais 

(espaciais e multiescalares), seja pela integração de arquiteturas mais avançadas, como 

Transformers, que têm sido exploradas recentemente em modelagem climática. 

Entretanto, há desafios metodológicos a se enfrentar. Em paralelo, a estrutura dos modelos é 

baseada em séries temporais unidimensionais, que limita a representação de padrões espaciais e 
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a propagação de anomalias. Incluir componentes multivariados com estrutura georreferenciada 

pode aumentar a generalização, principalmente para aplicações que exigem previsão 

regionalizada. Outro ponto crítico é a interpretação dos resultados: ainda que os modelos 

apresentem bons indicadores de desempenho, suas previsões podem ser pouco compreensíveis do 

ponto de vista físico, o que pode restringir a sua aceitação em ambientes operacionais mais 

conservadores. 

Finalmente, o custo computacional também é um fator limitante significativo. Operacionalizar 

o treinamento de modelos requer infraestrutura robusta, composta por unidades de processamento 

gráfico (GPUs), unidades de armazenamento de alta velocidade e capacidade de paralelização. A 

manutenção de modelos baseados em séries temporais dinâmicas, como o índice ONI, requer 

atualizações periódicas e a revalidação dos parâmetros de entrada. Em alguns ambientes 

operacionais, torna-se ainda mais necessária a disponibilidade de dados em tempo quase real, 

além da integração com pipelines automatizados de ingestão, processamento e previsão. 

5.  CONCLUSÃO 

Este estudo avaliou o desempenho de quatro arquiteturas de redes neurais artificiais — MLP, 

RNN, LSTM e CNN-LSTM — na previsão do índice ONI associado ao ENOS, considerando 

defasagens temporais (lags) de 1 a 6 meses. 

Os resultados indicaram que todas as arquiteturas apresentam alta acurácia em horizontes de 

curto prazo (até 3 meses), com coeficientes de determinação (R²) superiores a 0,93 no lag 1 e 

baixos valores de erro (MAE < 0,19 e RMSE < 0,24). A MLP mostrou robustez em lags curtos, 

enquanto a LSTM apresentou maior estabilidade em horizontes mais longos, ainda que com queda 

significativa de desempenho. 

A análise evidenciou que previsões confiáveis do ENOS com base em redes neurais artificiais 

se restringem ao curto prazo, até três meses de antecedência. Para prazos superiores, observou-se 

perda sistemática de acurácia, associada tanto à defasagem temporal quanto à natureza caótica do 

sistema climático. Essa limitação reforça a necessidade de explorar variáveis adicionais (ex.: 

componentes espaciais) e arquiteturas mais avançadas em estudos futuros. 

Adicionalmente, destaca-se que o ENOS está inserido em um sistema dinâmico e 

multifatorial, sensível a interações atmosféricas e oceânicas em escalas globais. Fatores externos, 

como a variabilidade da irradiância solar, podem desempenhar papel importante na modulação 

do fenômeno, sendo recomendada, em estudos futuros, a incorporação de variáveis associadas à 

radiação solar (como TSI, proxies solares ou padrões de atividade solar), o que pode ampliar o 

horizonte útil de previsão dos modelos. 

Assim, a principal contribuição deste trabalho foi demonstrar, de forma comparativa, a 

influência do horizonte de previsão sobre o desempenho das redes neurais artificiais na 

modelagem do ENOS, delimitando o potencial e as limitações práticas dessas ferramentas no 

contexto climático. 

Por fim, recomenda-se a continuidade da pesquisa com a ampliação da base de dados, o uso 

de abordagens multivariadas com integração de componentes espaciais, e a exploração de 

arquiteturas mais avançadas, como Transformers e redes híbridas, que têm apresentado resultados 

promissores na modelagem de séries temporais climáticas complexas. 
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