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Este trabalho apresenta uma abordagem baseada em redes neurais artificiais para a previsdo do fendmeno
El Nifio—Oscilagio Sul (ENOS), utilizando como variavel-alvo o Indice Oceanico de El Nifio (ONI). Foram
avaliadas quatro arquiteturas — Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long
Short-Term Memory (LSTM) e CNN-LSTM — em horizontes de previsdo definidos por defasagens
temporais (lags) de 1 a 6 meses. O objetivo foi analisar o impacto do tempo de antecedéncia sobre a acuracia
das previsodes e delimitar o horizonte de utilidade pratica dessas estimativas. As variaveis preditoras incluem
indicadores oceanograficos e atmosféricos consolidados na literatura: anomalias de Temperatura da
Superficie do Mar (TSM) na regido Nifio 3.4, Indice de Oscilagdo Sul (SOI), indice Multivariado do
El Nifio versdao 2 (MELv2) e o Padrdo de Oscilagdo do Pacifico Norte-Americano (PNA). Para evitar
vazamento de dados, adotou-se a separagdo temporal entre os conjuntos de treino e teste, sem
embaralhamento. Os resultados indicam que, para lag 1, os modelos alcangcam coeficientes de determinagéo
(R?) superiores a 0,94, demonstrando elevada capacidade de previsdo em curto prazo. Com o aumento do
lag, observa-se queda progressiva no desempenho, atingindo R? abaixo de 0,20 para lag 6. A analise
comparativa, por meio de um score unificado baseado em R?, MAE e RMSE normalizados, evidenciou a
robustez da MLP em diferentes janelas temporais, embora a LSTM tenha se destacado em horizontes mais
longos. Os resultados destacam o potencial das redes neurais na captura de padrdes climaticos de curto
prazo e suas limita¢Oes para previsdes em escalas temporais estendidas.
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This study presents an approach based on artificial neural networks for forecasting the El Nifio—Southern
Oscillation (ENSO) phenomenon, using the Oceanic Nifio Index (ONI) as the target variable. Four neural
network architectures were evaluated — Multilayer Perceptron (MLP), Recurrent Neural Network (RNN),
Long Short-Term Memory (LSTM), and CNN-LSTM — across forecasting horizons defined by temporal
lags ranging from 1 to 6 months. The main objective was to analyze the impact of lead time on prediction
accuracy and to determine the practical time limit of these estimates. The predictor variables include
well-established oceanographic and atmospheric indicators: Sea Surface Temperature (SST) anomalies in
the Niflo 3.4 region, the Southern Oscillation Index (SOI), the Multivariate El Nifio Index version 2
(MELv2), and the Pacific North American Pattern (PNA). To prevent data leakage, a temporal split was
applied between the training and testing sets, without shuffling. The results indicate that, for lag 1, the
models achieved coefficients of determination (R?) above 0.94, demonstrating high short-term forecasting
capability. However, as the lag increased, a progressive decline in performance was observed, reaching R?
values below 0.20 for lag 6. A comparative analysis using a unified score based on normalized R?, MAE,
and RMSE revealed the robustness of MLP across different temporal windows, although LSTM
outperformed in longer-term horizons. These results highlight the potential of neural networks in capturing
short-term climate patterns, while also emphasizing their significant limitations for extended forecasting
timeframes.
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1. INTRODUCAO

A variabilidade climatica interanual mais proeminente do planeta é impulsionada pelo El
Nifio—Oscilagdo Sul (ENOS), fendmeno originado no Pacifico tropical a partir da interagdo
oceano—atmosfera [1] e com implicacdes globais nos padrdes de precipitagdo, temperatura e
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circulagdo atmosférica [2, 3]. Suas fases extremas, El Niflo (aquecimento anomalo do Pacifico
leste e central) e La Nifia (resfriamento andmalo), afetam eventos extremos, produtividade
agricola, recursos hidricos e energia em escala global [4, 5]. No Brasil, a capacidade de prever o
estado do ENOS com antecedéncia de meses ¢ estratégica para setores como agricultura, energia
elétrica e gestao de riscos de desastres [6].

Apesar de décadas de pesquisa, a previsdo do ENOS ainda é um grande desafio [6] e tem papel
estratégico no planejamento dos setores motrizes dos paises, como o Brasil, uma vez que eventos
El Nifio intensos provocam impactos bilionarios para o agronegocio [7], sO para citar alguns.
Modelos acoplados oceano-atmosfera baseados em principios fisicos tém sido a principal
metodologia utilizada para a previsdo operacional, mas sofrem com os vieses inerentes ao modelo,
requisitos computacionais intensivos e limitagdes na representacdo de processos em pequena
escala [8]. Modelos estatisticos, embora computacionalmente eficientes, enfrentam desafios na
capacidade de capturar a complexa ndo-linearidade das interagdes oceano-atmosfera e a transi¢ao
entre as fases do ENOS. Um desafio particular € a persistente "barreira de previsibilidade da
primavera" [9], que ¢ um periodo durante o primeiro semestre do ano quando a habilidade
preditiva diminui drasticamente, tornando a previsao para o segundo semestre (crucial para o
desenvolvimento de El Nifilo/La Nifia) uma tarefa de grande dificuldade.
Considerando o desafio da barreira de previsibilidade persistente, ¢ importante que a previsdo
tenha antecedéncia de trés a seis meses, o que permite a possibilidade de planejamento por setores
sensiveis a variagdes climaticas causadas pelo fenomeno [5, 10]. Por exemplo, a definigdo da
safra e do plantio no Centro-Oeste ¢ Sudeste pode ser adaptada as previsdes do ENOS; no setor
elétrico, o Operador Nacional do Sistema (ONS) pode ajustar o despacho térmico frente aos
cenarios de reducdo na capacidade de geracdo de energia das centrais hidrelétricas [11]. Assim,
melhorar os modelos preditivos do ENOS traz beneficios economicos ¢ estratégicos tangiveis.

O ENOS ¢ parte de um sistema interconectado, onde a intera¢do entre o oceano Pacifico
Equatorial e a atmosfera ¢ mediada por mecanismos como a circulacdo de Walker, as ondas de
Kelvin e Rossby, e processos de ressurgéncia; esses mecanismos contribuem para a
retroalimentagdo positiva durante o desenvolvimento dos eventos El Nifio [12] e entendé-los ¢
fundamental para que modelos baseados em aprendizado de maquina consigam extrair padrdes
climéaticos robustos e significativos.

A caracterizagdo operacional do ENOS (EI Nifio—Oscilagao Sul) ocorre, principalmente, via o
Indice Oceanico de El Nifio (ONI). Esse indice é calculado a partir da anomalia da temperatura
da superficie do mar (TSM) na regido denominada Nifio 3.4 (latitude 5°N—5°S, longitude 120°W—
170°W). O ONI ¢ obtido como uma média moével de trés meses consecutivos dessas anomalias e
comparado com uma série climatologica de 30 anos, atualizada periodicamente. Esse indice ¢é
amplamente utilizado por agéncias meteorologicas, como a National Oceanic and Atmospheric
Administration (NOAA), para indicar ndo apenas a presenc¢a do fendmeno, mas também sua
intensidade e duragdo [13]. A Figura 1 ilustra a série historica do indice ONI, com destaque para
as classificagoes de intensidade dos eventos El Nifio e La Niifia.

Fases do ENSO com base no indice ONI

--El Nifio muito forte

--El Nifio forte

-—-El Nifio moderado
------------ El Nifio fraco

--La Nifa fraca
--La Nifia moderada
--La Nifia forte

| | | | | | | |
1950 1960 1970 1980 1990 2000 2010 2020

Figura 1 — Série histérica do Indice Ocednico de El Nifio (ONI) e faixas de intensidade dos eventos
ENOS.

Embora o ENOS seja fortemente influenciado por mecanismos internos da interagdo oceano-
atmosfera, estudos tém demonstrado que situa¢des externas — como a variabilidade da irradiancia
solar (Total Solar Irradiance — TSI) — também podem modular a distribui¢do de energia na
superficie dos oceanos tropicais. Essa modulagdo atua de forma indireta sobre processos como
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ressurgéncia, conveccao atmosférica e deslocamento da termoclina, alterando o padrao sazonal e
decadal de fendmenos como o El Nifio [14, 15]. A absor¢do de radiacdo solar pelos oceanos,
condicionada ainda por fatores como albedo e cobertura de nuvens, compde o pano de fundo
energético sobre o qual as anomalias do ENOS se desenvolvem.

Apesar da relevancia do fendmeno, prever com antecedéncia suas variagcdes continua sendo
um dos grandes desafios da climatologia moderna. A dinamica do ENOS envolve multiplos
fatores oceanicos e atmosféricos que interagem criando um sistema nao linear e, muitas vezes,
cadtico [16]. Essa complexidade faz com que os modelos estatisticos tradicionais, como
regressoes lineares ou modelos ARIMA, ndo sejam eficientes o suficiente, especialmente para
projecdes de médio e longo prazo [17].

Nesse contexto, abordagens baseadas em inteligéncia artificial t€m ocupado espaco, sobretudo
pelo uso de redes neurais artificiais (RNAs), capazes de revelar relagdes complexas e ndo lineares
em séries temporais climaticas [18, 19]. Trabalhos recentes mostram que arquiteturas como
LSTM e CNN-LSTM apresentam desempenho promissor na previsdo do ENOS, especialmente
para horizontes de curto prazo [20, 17].

A contribuicdo desses métodos esta em explorar padrdes ocultos de memoria temporal e
espacial que métodos estatisticos classicos ndo capturam. Ainda assim, a literatura refor¢a que o
ganho tende a ser limitado em defasagens mais longas, enfatizando a importancia de se investigar
os limites praticos de aplicagdo dessas arquiteturas [6, 21].

Assim, este trabalho realiza uma analise comparativa entre diferentes arquiteturas de redes
neurais — MLP, RNN, LSTM e CNN-LSTM — aplicadas a previsdo do indice ONI,
considerando horizontes de 1 a 6 meses (/ags). Objetiva-se, pois, compreender o limite temporal
de acuracia dessas arquiteturas, fornecendo subsidios para aplicacdes praticas em setores
vulneraveis as varia¢des climaticas associadas ao ENOS.

2. MATERIAL E METODOS

A metodologia compreende sete etapas principais: (i) coleta e organizagdo dos dados
climaticos, (ii) normalizag¢ao das séries, (iii) criagdo de defasagens temporais (/ags), (iv) analise
de correlagdo entre variaveis, (v) defini¢cdo das arquiteturas de rede, (vi) treinamento dos modelos
e (vii) avaliacdo de desempenho.

Os dados utilizados foram obtidos de fontes publicas da NOAA — National Oceanic and
Atmospheric Administration, referéncia internacional no monitoramento do ENOS. Foram
consideradas séries mensais iniciadas em janeiro de 1950, contendo indicadores oceanicos e
atmosféricos amplamente reconhecidos pela literatura: anomalias da temperatura da superficie do
mar (SST) nas regides Nifio 3, Nifio 3.4 e Nifio 4, Indice de Oscilagdo Sul (SOI), Indice
Multivariado do El Nifio (MEL.v2), radiacdo de ondas longas (OLR) e o Padrdo de Oscilagao do
Pacifico Norte-Americano (PNA). A variavel-alvo do modelo € o proprio ONI, calculado com
base na média movel trimestral das anomalias de SST na regido Nifio 3.4.

Todas as variaveis foram normalizadas utilizando Min-Max Scaling com base no conjunto de
treinamento. A divisdo entre treino e teste seguiu propor¢ao de 80/20, respeitando a ordem
cronologica das observagdes para evitar vazamento de dados.

Para incorporar o efeito da memoria climatica e simular diferentes horizontes de previsdo,
foram criadas defasagens de 1 a 6 meses (lags de 1 a 6) para cada variavel preditora. Com isso,
cada modelo passou a prever o valor atual do ONI com base nas condigdes climaticas de 1 a
6 meses anteriores, permitindo investigar o desempenho das redes em diferentes janelas de
antecipacao.

A partir das séries defasadas, foi conduzida uma analise de correlacdo de Pearson entre as
variaveis explicativas ¢ o ONI. Inicialmente, foi gerada uma matriz completa contendo todas as
variaveis. Em seguida, aplicou-se um filtro considerando apenas aquelas com coeficiente de
correlacao (|r|) maior ou igual a 0,80 em relagdo ao ONI. Essa filtragem teve por objetivo reduzir
a dimensionalidade do problema e manter apenas os preditores com maior relevancia estatistica.
A Figura 2 ilustra essa selecdo, com a matriz original a esquerda e a versdo filtrada a direita.
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Figura 2 — Matriz de correlagdo de Pearson entre as variaveis climdticas disponiveis na série historica
(a esquerda) e a matriz filtrada com variaveis que apresentaram correlagdo com médulo igual ou
superior a 0,80 em relagdo ao ONI_target (a direita). As variaveis selecionadas na matriz da direita
foram utilizadas como entradas nos modelos de previsdo do ENOS, por apresentarem associagdo
estatistica significativa com o indice ONL.

As redes neurais testadas foram: Perceptron Multicamadas (MLP), Rede Neural Recorrente
(RNN), Rede Neural LSTM (Long Short-Term Memory) e uma arquitetura hibrida CNN-LSTM.
A MLP foi composta por trés camadas densas com 128, 64 e 1 neurdnio. A RNN utilizou uma
camada recorrente simples com 64 unidades, seguida de saida densa. A LSTM foi estruturada
com 64 unidades e dropout de 0.2, enquanto a CNN-LSTM combinou uma convolugdo 1D
(64 filtros, kernel 2x1), camada de pooling e uma LSTM final. As arquiteturas foram pensadas
para capturar padrdes de curto e longo prazo (RNN/LSTM), além de estruturas locais relevantes
(CNN-LSTM).

A Figura 3 ilustra essas arquiteturas, destacando as camadas utilizadas em cada modelo e a
transformacgdo das entradas climaticas ao longo da rede.

Arquiteturas das Redes Neurais CNN-LSTM

MLP

Input shape: (None, 1, 4) | Output shape: {None, 1, 64)
LSTM RNN
Input shape: (None, 4) | Output shape: (None, 128)
Input shape: (None, 1, 4) | Outpu shape: (None, 64) | | Input shape: {(None, 1, 4) | Output shape: {None, 64) |

Input shape: (None, 1,84) | Outpul shaps: (None, 1, 64)

Input shape: (None, 128) | Output shape: (None, 64)

Input shape: (None, 1,84) | Output shape: (None, 64)

Input shape: (None, 84) | Output shape: (None, 1) Input shape: (None, 64) | Output shape: (None, 1)

Input shape: (None, 64) | Qutput shape: (None, 1)

Input shape: (None, 64) | Output shape: (None, 1)

Figura 3 — Arquiteturas das redes neurais artificiais utilizadas: LSTM, RNN, MLP e CNN-LSTM. As
caixas indicam as camadas de cada modelo, com os respectivos formatos de entrada e saida para o
conjunto de dados do ENOS.

Todos os modelos foram implementados em Python 3.10, utilizando o ambiente Jupyter
Notebook, com a biblioteca TensorFlow 2.15 e sua API Keras. O monitoramento do treinamento
foi realizado com o TensorBoard, possibilitando o acompanhamento das métricas de perda e
validagdo ao longo das épocas.

O processo de treinamento respeitou a ordem temporal dos dados (sem embaralhamento) e foi
realizado por até 100 épocas com batch size de 16. A fungdo de ativag@o nas camadas ocultas foi
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ReLU, com saida linear. O otimizador utilizado foi o Adam, com taxa de aprendizado padrao de
0,001. A funcdo de perda adotada foi o erro quadratico médio (MSE).

O desempenho dos modelos foi avaliado com base em trés métricas complementares: Erro
Absoluto Médio (MAE), Raiz do Erro Quadratico Médio (RMSE) e Coeficiente de Determinacao
(R?). Além disso, as séries previstas foram comparadas graficamente com os valores observados
do ONI para analise qualitativa da aderéncia dos modelos ao comportamento historico do ENOS.

3. RESULTADOS E DISCUSSAO

Os modelos de redes neurais artificiais demonstraram comportamento consistente em relacao
a defasagem temporal (/ag), revelando uma tendéncia clara: quanto menor o horizonte de
previsdo, maior a acuracia preditiva. Essa relagdo inversa entre desempenho e /ag foi observada
de forma sistematica em todas as arquiteturas testadas (MLP, LSTM, RNN ¢ CNN-LSTM), com
destaque para os lags 1 e 2, que apresentaram os melhores resultados em termos de erro e
correlagdo com a série real.

Avaliando as curvas de perda durante o treinamento, ¢ possivel observar que todos os modelos
convergiram rapidamente, estabilizando o erro a partir da 10* época. A maioria manteve bons
niveis de generaliza¢do, com perdas de validagdo proximas das perdas de treinamento. A MLP,
em especial, apresentou curvas mais regulares e com menor oscilagdio mesmo em Jlags mais
longos, o que ajuda a explicar seu bom desempenho global. Esse comportamento pode ser
visualizado na Figura 4, que exibe as curvas de perda de treino e validagdo para cada arquitetura
e lag.

Curvas de Perda (Treino e Validacao) por Modelo e Lag

MLP LSTM
0.14 1 —— Treino Lag 1 —— Treino Lag 4 0.14 1 —— Treino Lag 1 — Treino Lag 4
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Figura 4 — Curvas de perda (erro quadratico médio) para treino e validag¢do ao longo das épocas, para
os modelos MLP, LSTM, RNN e CNN-LSTM, com defasagens variando de 1 a 6 meses.

Outro aspecto relevante observado nos experimentos € a ocorréncia de overfitting em lags
mais longos (>4 meses). As curvas de perda mostram que, embora o erro de treinamento continue
diminuindo, a perda de validagdo estabiliza ou até aumenta, sugerindo que os modelos passam a
memorizar padroes espurios da série historica sem capacidade de generalizacdo. Esse
comportamento ¢ consistente com a literatura, que destaca a redugdo da previsibilidade em
horizontes mais distantes devido ao carater caodtico da interagdo oceano—atmosfera [6, 21]. Além
disso, a chamada barreira de previsibilidade da primavera [9] contribui para agravar essa
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limitacdo, tornando a acuracia dos modelos significativamente menor em lags superiores a trés
meses. Dessa forma, os resultados obtidos neste estudo reforcam que as redes neurais artificiais
sdo eficazes no curto prazo, mas enfrentam sérios desafios quando aplicadas a previsoes de médio
a longo prazo.

Ao analisarmos diretamente as métricas de desempenho (MAE, RMSE e R?), evidencia-se a
superioridade da MLP nos /ags mais curtos. No lag 1, esse modelo alcangou R? de 0,95, com
MAE de 0,164 ¢ RMSE de 0,209. Também teve o melhor desempenho no lag 2 (R? = 0,83) e no
lag 5 (R?=0,32). O LSTM, por sua vez, mostrou estabilidade em lags mais avangados, liderando
nos lags 4 (R*=0,52) e 6 (R?=0,20). Ja o RNN obteve o melhor resultado apenas no lag 3 (R*=
0,64), mas foi também o unico modelo com resultado negativo em R? no lag 6 (—0,04), indicando
limitagdo para previsoes distantes. A Figura 5 sintetiza esses resultados quantitativos e permite a
comparacao direta entre arquiteturas.

MAE por Modelo e Lag RMSE por Modelo e Lag R? por Modelo e Lag

061 —o— CNN-LSTM
0.4

05

0.4

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Lag (meses)

Figura 5 — Desempenho dos modelos de redes neurais artificiais com base em trés métricas (MAE, RMSE
e R?) para os diferentes lags de previsao do indice ONL

Para compreender o comportamento qualitativo das previsdes, a Figura 6 compara as séries
previstas e observadas do indice ONI nos lags 1 ¢ 6. No horizonte mais curto, os modelos sao
capazes de capturar com precisdo picos e vales da série, inclusive eventos extremos como 0s
El Nifios de 1982—-1983, 1997-1998 ¢ 2015-2016. No lag 6, entretanto, as previsdes tornam-se
mais suaves, com perda de sincronia e reducao da amplitude, dificultando a utilizagdo em sistemas
de alerta precoce.

MLP-Lagsle6 LSTM - Lags 1 e 6

—— Observado 3 — Observado
\ —— Previsto Lag 1 \ —— Previsto Lag 1
24 : == Previsto Lag & 4 \ == Previsto Lag &

—— Observado —— Observado
—— Previsto Lag 1 \ —— Previsto Lag 1
24 == Previsto Lag 6 1 \ == Previsto Lag 6

ONI

2015 2016 2017 2018 2019 2020 2021 2022 2023 2015 2016 2017 2018 2019 2020 2021 2022 2023
Data

Figura 6 — Comparagdo entre os valores observados e previstos do indice ONI para os lags 1 e 6.
Modelos reproduzem bem a série no curto prazo, mas perdem precisdo e amplitude nas previsoes de
longo prazo.

Como forma complementar de avaliacdo, a Figura 7 apresenta os modelos com melhor
desempenho em cada lag, segundo trés métricas distintas: maior R?, menor MAE e menor RMSE.
Essa abordagem permite identificar quais arquiteturas se destacaram em cada horizonte de
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previsdo e sob diferentes critérios de desempenho. Nota-se que a MLP apresentou o melhor
coeficiente de determinagdo (R?) nos dois primeiros lags, demonstrando forte capacidade de ajuste
em previsdes de curto prazo. Ja o modelo LSTM destacou-se principalmente em lags mais longos,
sendo o mais preciso em termos de erro médio absoluto (MAE) e raiz do erro quadratico médio
(RMSE) no lag 6. A alternancia entre os modelos, conforme a métrica e o horizonte considerado,
reforca a importancia de multiplos critérios para uma avaliagdo equilibrada do desempenho
preditivo.

Modelos com desempenho superior por métrica e horizonte de previsao (lag)

Maior R? por Lag Menor MAE por Lag Menor RMSE por Lag

CNN-LSTI

Figura 7 — Modelos com desempenho superior por métrica e horizonte de previsao (lag). Cada barra
representa a arquitetura com melhor resultado em termos de R? (mais alto), MAE e RMSE (mais baixos)
para cada valor de lag. A alterndncia entre modelos reflete variacoes no desempenho conforme a métrica
adotada e o horizonte de previsdo.

Os resultados obtidos também encontram respaldo em outros estudos [21] que demonstraram
que, mesmo com arquiteturas avancadas de deep learning, a previsibilidade do ENOS sofre forte
limitagdo para horizontes superiores a seis meses. De forma semelhante, [6] revisaram o estado
da arte e concluiram que a acurécia preditiva decai rapidamente com o aumento do lag, reforcando
a dificuldade de superar a barreira de previsibilidade da primavera. Esses achados corroboram os
resultados deste trabalho, que evidenciaram a queda acentuada no desempenho das redes neurais
a partir do lag 4. Além disso, estudos como os de [3, 16] destacam que a intensificagdo do
aquecimento global pode amplificar a frequéncia e a intensidade dos eventos extremos de ENOS,
aumentando a importancia de métodos preditivos robustos, mas também impondo novos desafios
metodoldgicos.

4. APLICACOES PRATICAS E LIMITACOES

A previsdo dos eventos ENOS por redes neurais artificiais antecipa as varia¢des no indice ONI
e abre caminho para a construgdo de sistemas de suporte a decisdo baseados em aprendizado de
maquina. Assim, modelos de previsdo podem ser incorporados a plataformas ja consagradas como
ANA, INMET, CPTEC etc., de forma que os mesmos seriam combinados com entradas de
diferentes fontes climaticas. Essa integracdo tecnologica € relevante para o6rgaos de planejamento
hidrico e meteoroldgico e, dessa forma, um sistema de alerta baseado em limites probabilisticos
podera permitir o rastreamento continuo da evolugdo dos padrdes oceanicos.

Os modelos também podem ser adaptados para aplicacdes especificas por regides, sendo
treinados com dados localizados, o que ampliaria o uso em escala regional, como o gerenciamento
de bacias hidrograficas, controle de queimadas, estimativa de produtividade agricola sob
influéncia do ENOS.

Assim, ainda que os modelos aqui testados demonstrem bom desempenho em curto prazo, o
uso operacional em horizontes longos exige cautela, seja pela necessidade de variaveis adicionais
(espaciais e multiescalares), seja pela integracdo de arquiteturas mais avangadas, como
Transformers, que t€ém sido exploradas recentemente em modelagem climatica.

Entretanto, ha desafios metodologicos a se enfrentar. Em paralelo, a estrutura dos modelos é
baseada em séries temporais unidimensionais, que limita a representagdo de padrdes espaciais e
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a propagacdo de anomalias. Incluir componentes multivariados com estrutura georreferenciada
pode aumentar a generalizacdo, principalmente para aplicagdes que exigem previsao
regionalizada. Outro ponto critico ¢ a interpretagdo dos resultados: ainda que os modelos
apresentem bons indicadores de desempenho, suas previsdes podem ser pouco compreensiveis do
ponto de vista fisico, 0o que pode restringir a sua aceitagdo em ambientes operacionais mais
conservadores.

Finalmente, o custo computacional também ¢ um fator limitante significativo. Operacionalizar
o treinamento de modelos requer infraestrutura robusta, composta por unidades de processamento
grafico (GPUs), unidades de armazenamento de alta velocidade e capacidade de paralelizagdo. A
manutengdo de modelos baseados em séries temporais dinamicas, como o indice ONI, requer
atualizagdes periodicas e a revalidacdo dos parametros de entrada. Em alguns ambientes
operacionais, torna-se ainda mais necessaria a disponibilidade de dados em tempo quase real,
além da integragdo com pipelines automatizados de ingestdo, processamento € previsao.

5. CONCLUSAO

Este estudo avaliou o desempenho de quatro arquiteturas de redes neurais artificiais — MLP,
RNN, LSTM e CNN-LSTM — na previsdo do indice ONI associado ao ENOS, considerando
defasagens temporais (lags) de 1 a 6 meses.

Os resultados indicaram que todas as arquiteturas apresentam alta acuracia em horizontes de
curto prazo (até 3 meses), com coeficientes de determinacdo (R?) superiores a 0,93 no lag 1 e
baixos valores de erro (MAE < 0,19 ¢ RMSE < 0,24). A MLP mostrou robustez em lags curtos,
enquanto a LSTM apresentou maior estabilidade em horizontes mais longos, ainda que com queda
significativa de desempenho.

A analise evidenciou que previsoes confiaveis do ENOS com base em redes neurais artificiais
se restringem ao curto prazo, até trés meses de antecedéncia. Para prazos superiores, observou-se
perda sistematica de acuracia, associada tanto a defasagem temporal quanto a natureza cadtica do
sistema climatico. Essa limitacdo reforca a necessidade de explorar varidaveis adicionais (ex.:
componentes espaciais) e arquiteturas mais avangadas em estudos futuros.

Adicionalmente, destaca-se que o ENOS estd inserido em um sistema dindmico e
multifatorial, sensivel a interagdes atmosféricas e oceanicas em escalas globais. Fatores externos,
como a variabilidade da irradiancia solar, podem desempenhar papel importante na modulagdo
do fenomeno, sendo recomendada, em estudos futuros, a incorporagdo de varidveis associadas a
radiagdo solar (como TSI, proxies solares ou padroes de atividade solar), o que pode ampliar o
horizonte 1til de previsdo dos modelos.

Assim, a principal contribui¢do deste trabalho foi demonstrar, de forma comparativa, a
influéncia do horizonte de previsdo sobre o desempenho das redes neurais artificiais na
modelagem do ENOS, delimitando o potencial e as limitagdes praticas dessas ferramentas no
contexto climatico.

Por fim, recomenda-se a continuidade da pesquisa com a ampliagdo da base de dados, o uso
de abordagens multivariadas com integragdo de componentes espaciais, ¢ a exploragdo de
arquiteturas mais avangadas, como Transformers e redes hibridas, que t€ém apresentado resultados
promissores na modelagem de séries temporais climaticas complexas.
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