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The students interested in the study of strongly correlated electron systems normally feel, in the beginning 
of their studies, a great difficulty in understanding the complex correlations of these systems. We consider 
that for these students it is very important to have texts that analyze pedagogically the theoretical research 
methods of the subject. We show how to determine the thermodynamic properties of the Hubbard model 
for the two-dimensional square lattice, utilizing the Hartree-Fock approximation. All the procedures and 
peculiarities which lead to the determination of the thermodynamic properties and to the comprehension 
of the meaning of the Hartree-Fock approximation applied to models of strongly correlated electron 
systems are pedagogically presented in detail. We obtain the magnetization, the magnetic susceptibility, 
the internal energy, the specific heat, and also a magnetic phase diagram of the studied system. Our 
approach clearly shows that the use of the Hartree-Fock approximation, in this case, is very simple. 
Keywords: Hubbard model, square lattice, Hartree-Fock approximation, thermodynamic properties. 

 

Os estudantes interessados no estudo de sistemas de elétrons fortemente correlacionados sentem, 
normalmente, no começo de seus estudos, uma grande dificuldade em compreender as complexas 
correlações desses sistemas. Nós consideramos que para esses estudantes, é muito importante que existam 
textos que analisem didaticamente os métodos de pesquisa teórica do assunto. Nós mostramos como 
determinar as propriedades termodinâmicas do modelo de Hubbard para a rede quadrada, utilizando a 
aproximação de Hartree-Fock. Todos os procedimentos e peculiaridades que levam à determinação das 
propriedades termodinâmicas e à compreensão do significado da aproximação de Hartree-Fock aplicada a 
modelos de sistemas de elétrons fortemente correlacionados são apresentados em detalhes didáticos. Nós 
obtemos a magnetização, a susceptibilidade magnética, a energia interna, o calor específico e, também, 
um diagrama de fases magnéticas do sistema estudado. Nossa abordagem mostra claramente que o uso da 
aproximação de Hartree-Fock, neste caso, é muito simples. 
Palavras-chave: modelo de Hubbard, rede quadrada, aproximação de Hartree-Fock, propriedades termodinâmicas. 

 
 
1. INTRODUCTION 

The Hubbard model [1] was created to describe the effect of correlations for d-electrons in 
transition metals. The Hamiltonian model, 
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consists of two contributions, a kinetic term describing the motion of electrons between 
neighboring sites, and an on-site term, which approximates the interactions among electrons, 
whose strength is given by the parameter U. The hopping integral Tij is usually restricted to 
nearest-neighbors, and is assumed translationally invariant, namely Tij = - t, t > 0 [2]. +

σic  ( σic ) 
is the electron creation (annihilation) operator on the site i with spin σ , 1±=σ , or ↑ ,↓ , and 

σσσ iii ccn += . 
The Hamiltonian (1) is thought to be appropriate to describe the main features of electron 

correlations in narrow energy bands, leading to collective effects as itinerant magnetism and 
metal-insulator transition, and has been often used to describe real materials exhibiting these 
phenomena [2, 3]. 
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The interest in the Hubbard model and, in general, in the field of strongly correlated electron 
systems, has been stimulated by the discovery of heavy fermions and high-Tc superconductors 
[2, 4]. The applications related to superconductivity have stimulated the achievement of new 
results concerning the properties of the model, especially for the two-dimensional case [2]. 

A considerable amount of work has been devoted to the solution of the Hubbard model since 
its creation. Nevertheless, exact results are still very rare, and their validity is mainly confined to 
the one-dimensional case [2, 3]. In more than one-dimension the model is not exactly solvable 
and a variety of approximate techniques have been used to study it, among others, the Hartree-
Fock approximation. 

In this work, we show how to determine the thermodynamic properties of the Hubbard 
model for the two-dimensional square lattice with nearest-neighbors hopping only, utilizing the 
Hartree-Fock approximation. We present, in pedagogical detail, all procedures and peculiarities 
that allow to determine the thermodynamic properties and to understand the meaning of the 
Hartree-Fock approximation applied to models of strongly correlated electron systems. 

We believe that our approach will be useful for students that are interested in advancing to 
the study of strongly correlated electron systems. 

The paper is organized as follows. In Sec. 2 we describe the Hartree-Fock approximation, 
and the quantities that we calculate are defined. In Sec. 3 the results are presented. We close 
with the conclusions in Sec. 4. 

 
2. HARTREE-FOCK APROXIMATION 

We discuss in this paper a particularly simple case of the Hartree-Fock approximation which 
may represent non-ferromagnetic or ferromagnetic states only. In the case of the Hubbard 
Hamiltonian this amounts to simply replacing the term niσni-σ by niσ<ni-σ> + <niσ>ni-σ, where 
<niσ> is the average of the expectation of ni-σ over a grand canonical ensemble at some 
temperature T [1]. 

The Hartree-Fock Hamiltonian is found to be 
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Attention will now be restricted to the class of solutions for which 
σσ nni =〉〈  for all i.                                        (3) 

Then Eq. (2) becomes 

σσ
σ

σ
σ

σσ ii
iji

jiijHF ccnUccTH +
−

+ ∑∑ +=
,,,                                    (4) 

Now let ckσ
+ckσ be the creation (annihilation) operator for electrons in the Bloch state (k,σ), 

then one can also write 
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where Ns is the number of sites. 

Relations (5) and (6) can now be used to rewrite the Hamiltonian (4) as 
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which is simply the Hamiltonian for a collection of non-interacting electrons with a slightly 
modified band structure, the energy of the (k,σ) state being εk + Un-σ. The k sum runs over the 
first Brillouin zone, and the single-particle eigenstates for the non-interacting case (U = 0) have 
energies [1]. 
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Following the usual procedure of the grand canonical method of statistical mechanics, we 

calculate for the Hamiltonian (7) the average number of electrons in the state (k,σ)  with the 
Fermi-Dirac function 
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where µ is the chemical potential and must be determined by imposing 

↓↑ += nnn ,                                 (10) 
where 
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                                               (11) 
and n is the average number of electrons per site. 

One possible solution of Eqs. (9) to (11) is that for which 

2
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                                 (12) 
which represents a non-ferromagnetic state of the system. Thus, it is simpler to determine µ by 
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In the magnetic case one must solve a self-consistent equation for m, the average 

magnetization per site (in Bohr magnetons), 
 

↓↑ −= nnm                                     (14) 
with µ still being determined by Eq. (13). 

In the presence of a magnetic field h in the z-direction, the Hamiltonian (7) is modified for 
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where µB is Bohr magneton. 

With Eq. (15) the magnetic susceptibility χ is calculated from 
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The internal energy per site u is determined by 
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Finally, the specific heat c can be calculated by 

dT
duc =

                                         (19) 
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3. THERMODYNAMIC PROPERTIES 

We only consider the two-dimensional square lattice with nearest-neighbor hopping and 
thus, Tij = - t and the single-particle eigenstates for the non-interacting case have energies [3] 

)]cos()[cos(2 akakt yxk +−=ε                                     (20) 
where a = |Ri - Rj| is the magnitude of the primitive lattice vectors a1 and a2. In this work we 
adopt a=1. Thus, 

)]cos()[cos(2 yxk kkt +−=ε                             (21) 
Figure 1 shows some points of the two-dimensional square lattice. 

 
Figure 1. Some points of the two-dimensional square lattice, with |a1| = |a2| = a, and β = π/2. 

 
The k sums, in this case, are interpreted as 

∑∑ →
yx kk ,k                                                                                            

with kν (ν = x, y) varying in the interval –π until π. In practice, we consider, for effect of 
numerical calculation, a finite lattice with Ns = L2, being that each kν assumes L values through 
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In this work we take L = 50. 
The chemical potential µ is U/2 for a half-filled band, n = 1.0 [3], but in the general case it 

must be calculated by Eq. (13). Figure 2 shows the average number of electrons per site n versus 
µ/t, utilizing Eq. (13), for T = 0.1t/kB and U = 6t. 

 
Figure 2. Average electron number per site versus µ/t, for T = 0.1t/kB and U = 6t. 
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The temperature dependence of the magnetization for null field, h = 0, is obtained from Eq. 
(14), under the constraint of Eq. (10), with Eqs. (11) and (9). Figure 3 shows a graph of the 
magnetization versus temperature for two different average electron numbers per site, n = 1.0 
and n = 0.8, in which U = 6t. We observed that the critical temperature Tc, the temperature 
above which magnetization does not occur, is larger for n = 1.0. 

 
Figure 3. Magnetization versus temperature for n = 0.8 and 1.0, with U = 6t. Tc = 0.58 t/kB for n = 0.8, 
and Tc = 0.69 t/kB for n = 1.0. 
 

Another interesting graph of the magnetization is shown in Fig. 4. In this case, the 
interaction U dependence of m is presented for n = 0.8 and 1.0, at T = 0.1 t/kB. We can verify in 
it the existence of critical interaction energy, Uc, below which magnetization does not occur and 
a U of saturation, above which the magnetization does not increase anymore, that is, it saturates. 
The maximum value of the magnetization, i.e., its saturation value, is m = n. 

A simple phase diagram for ferromagnetic (F) and non-ferromagnetic (NF) phases can be 
obtained by plotting the Uc as a function of the average particle number per site n at fixed T. In 
Fig. 5 it is shown the phase diagram at T = 0.1 t/kB. 

 
Figure 4. Magnetization versus U/t for n = 0.8 and for n = 1.0 at T = 0.1 t/kB. Uc = 3.78t for n = 1.0, and 
Uc = 5.1t for n = 0.8. The saturation value of the magnetization is m = n. 
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Figure 5. Phase diagram for two-dimensional Hubbard model in Hartree-Fock approximation. F and NF 
denote ferromagnetic and non-ferromagnetic phase at T = 0.1t/kB, respectively. 
 

The internal energy per site u can be determined from Eq. (18). Figure 6 shows u versus 
kBT/t for n = 1.0, h = 0, and U =6t. The occurrence of a phase transition with the temperature is 
evidenced by the inflection in u which occurs at Tc = 0.69 t/kB. 

 
Figure 6. Internal energy per site u versus kBT/t for n = 1, h = 0, and U = 6t. Tc = 0.69 t/kB. 

 
Calculating the derivative of the internal energy per site u as a function of temperature, Eq. 

(19), we easily get the graph of the specific heat as a function of temperature. Fig. 7 shows the 
specific heat c versus kBT/t for n = 1.0, h = 0, and U = 6t, obtained from Figure 6. Note that at 
Tc=0.69 t/kB, c presents a sharp peak. The form of the specific heat curve in Fig. 7 is the 
characteristic form of the specific-heat curve for two-dimensional square lattice magnetic 
models in the mean-field approximation [4, 5]. 

Finally, we determine the temperature dependence of the magnetic susceptibility χ from Eqs 
(16) and (15). Figure 8 shows χ versus kBT/t for n = 1.0 and U = 6t. Observe that at critical 
temperature, Tc = 0.69 t/kB, a discontinuity occurs in χ. 
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Figure 7. Specific heat c versus kBT/t for n = 1.0, h = 0, and U = 6t. Tc = 0.69 t/kB. 

 
Figure 8. Magnetic susceptibility χ versus kBT/t for n = 1.0 and U = 6t. Tc = 0.69 t/kB. 

 
 

4. CONCLUSIONS 

We have studied, with a pedagogical approach, the thermodynamic properties of the two-
dimensional Hubbard model on a square lattice using the Hartree-Fock approximation. The 
thermodynamic properties obtained in this work represent an important set of physical 
phenomena that are of ample interest in the study of strongly correlated electron systems. 

We have shown how to obtain the magnetization, the magnetic susceptibility, the internal 
energy, the specific heat, and also a phase diagram for ferromagnetic and non-ferromagnetic 
phases of the studied system. 

Our approach of the application of the Hartree-Fock approximation for the Hubbard model 
clearly shows that the use of the Hartree-Fock approximation in this case is very simple. The 
student can perceive how the ideas that involve the analysis of an ideal Fermi gas through the 
grand canonical method of statistical mechanics can be extended to an interacting system. The 
increase of the complexity only refers to the numerical problem of solving self-consistent 
equations. 
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