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In this work we study numerically the effects of the angle of deposition of particles in the growth process of 

a thin-film generated by aggregation of particles added at random. The particles are aggregated in a random 

position of an initially flat surface and with a given angle distribution. This process gives rise to a rough 

interface after some time of deposition. We performed Monte Carlo simulations and, by changing the angle 

of deposition, we observed different results from the random deposition (RD) model. We measured the usual 

scaling exponents, namely, the roughness (𝛼) and the growth (𝛽) exponents. Our results show that the 

particles added non-perpendicularly to the substrate, can change the behavior in a discrete atomistic random 

deposition model. When particles are deposited with an angle of 45° in relation to the surface, the values of 

𝛽 = 1/3  and 𝛼 ≈ 0.157 are observed in the Random Deposition model. We also propose an analytic 

approach, using a differential stochastic equation to analyze the growth process evolution, and our theoretical 

results corroborate the computer simulations. 
Keywords: stochastic growth equation, Monte Carlo simulations, thin-films  

 

Neste trabalho estudamos numericamente os efeitos do ângulo de deposição de partículas no processo de 

crescimento de um filme-fino gerado pela agregação de partículas nanométricas. As partículas são agregadas 

em uma posição aleatória de uma superfície inicialmente plana e com uma dada distribuição de ângulos de 

deposição. Este processo dá origem a uma interface rugosa após algum tempo de deposição. Realizamos 

simulações de Monte Carlo e, alterando o ângulo de deposição, observamos resultados diferentes do modelo 

de deposição aleatória (RD). Medimos os expoentes de escala usuais, ou seja, a saturação da rugosidade (α) 

e o expoente de crescimento (β). Nossos resultados mostram que as partículas adicionadas não 

perpendiculares ao substrato podem alterar o comportamento de um modelo discreto de deposição atomística. 

Quando as partículas são depositadas com um ângulo de 45 ° em relação à superfície, os valores de β = 1/3 e 

α ≈ 0.157 são observados no modelo de Deposição Aleatória. Também propomos uma abordagem analítica, 

utilizando uma equação estocástica diferencial para analisar a evolução do processo de crescimento de forma 

que nossos resultados teóricos corroboram as simulações computacionais. 
Palavras-chave: equação estocástica de crescimento, simulações de Monte Carlo, filmes finos 

1. INTRODUCTION  

The understanding of physical process that take place at surfaces and interfaces has attracted 

interest of researchers from different fields [1, 2]. Specially motivated by the technological 

applications developed from thin-films [3, 4], the investigation on the formation of structures due 

to the deposition of atoms or particles has been the subject of large number of recent studies both 

experimental and theoretical [5–8].  

By controlling the surface processes, one can control physical, chemical, optical and mechanical 

properties of the material, leading to the development of new devices with practical purposes [9]. 

Theoretical and computational models represent a powerful tool to study the growth of thin-films 

and interfaces, where the physicists can apply the well-known methods of statistical physics to 

describe these non-equilibrium phenomena.  

New advances in recent years allowed a better understanding of the fundamental phenomena 

which govern the deposition of particles forming a thin film at nanoscale. Atomistic models have 

been largely applied in this field of study, using different forms of particles [5, 10, 11]. Although 

many models are quite simpler, one can use them as a good starting point to study more 

sophisticated processes that are directly related to the experimental growth process and techniques.  
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New experimental techniques, such as sputtering or Molecular Beam Epitaxy (MBE), can 

provide suitable materials for a large range of applications, such as medicine [12], in which thin 

and ultra-thin film coatings for stent devices are, perhaps, one of most remarkable examples of 

nanostructured biomaterials. In another field, the electronic and nano electronic industry have an 

increasing demand for devices at nanoscale, in which the surface morphology play a very important 

role for applications in solar cells [13], information storages [14] and carbon nanotubes [15].  

In this paper we introduce a modification in the Random Deposition (RD) model [1, 2, 16], 

considering that the particles can be aggregated with different angles in relation to the initially flat 

substrate. Due to the simplicity of the model, random deposition is widely studied, but the 

uncorrelated interface resulting from this process is not realistic. In order to make the model more 

realistic and applicable to the surfaces science, we modify the RD model and introduce a natural 

correlation on the surface by adding particles obliquely. We study our model by means of computer 

simulations and stochastic growth equations and we show that, by adding particles obliquely to the 

surface, the RD model can produce different scaling exponents.  

This paper is organized as follows: In Sec 2 we analyze the standard methods for theoretical 

analysis of thin-films. In Sec. 3 we present our model, the deposition rules and simulations details. 

The discussion of the results of the numerical simulations and the theoretical analysis of the 

stochastic equations is presented in Sec. 4, and the main conclusions are presented in Sec. 5. 

2. METHODOLOGY FOR COMPUTER SIMULATION AND THEORETICAL 
ANALYSIS 

In the field of theoretical surface growth there are a few standard tools developed for the analysis 

of surfaces and interfaces. One method of analysis of surface growth is through scaling concepts. 

There are some characteristics of surfaces and interfaces which obey some scaling relations. 

Studying these relations and their corresponding exponents, one can define a few universality 

classes in which different processes share the same scaling behavior [1, 2].  

One can study the surface evolution by analyzing the height of a given position 𝑟 for a given 

instant of time. In this way, the interface height of a certain position is described by ℎ(𝑟, 𝑡), where 

h is the height of the surface in relation to the substrate. One can see the average height of the 

surface is illustrated in Figure 1. 

A possible way to study theoretically these processes is through continuum growth equations. 

Stochastic differential equations describe the interface at large length scales. One can associate a 

specific growth process with an equation for the surface height evolution and classify them into the 

proper universality class. The Random Deposition process is the simplest discrete atomistic model 

and can be described by the equation 

 
𝜕ℎ(𝑟,𝑡)

𝜕𝑡
= 𝐹 +  𝜂(𝑟, 𝑡),      (1) 

 

where 𝐹 represents the average number of particles per unit time that are added to the substrate at 

given position, increasing the height at that point. The last term on the equation, 𝜂(𝑟, 𝑡) represents 

the random fluctuation of this process, a noise that does not show spatial correlation on the heights 

in the substrate. On the other hand, a wide variety of processes of surface growth and non-

equilibrium interfaces, such as those related to the formation of porous surfaces, corrosion 

processes of metallic surfaces and dissolution of a crystalline solid in a liquid medium [17, 18] are 

represented by correlated surfaces. 

For the class of problems previously mentioned, one can analyze them by means of discrete 

growth models, where the deposition process is simulated by a computer algorithm and the surface 

morphology is reproduced. Simulations are an essential link between theory and experiments and 

can provide some morphological details that are usually neglected by the equations but revealed by 

experimental techniques [19]. 

In order to study numerically the morphology of a surface, one can calculate the interface width 

(surface roughness), 𝜔(𝐿, 𝑡), a function of time and the linear size of the substrate. In order to 

calculate 𝜔(𝐿, 𝑡), we determine the vertical height of the surface relative to the substrate at a given 
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time 𝑡, ℎ(𝑟, 𝑡), where 𝑟 gives the position on the substrate. The roughness 𝜔(𝐿, 𝑡) is defined as the 

mean square fluctuation of the height, 𝜔(𝐿, 𝑡) =  ‹[ℎ(𝑟, 𝑡) − ℎ̅(𝑡)]2›1/2 where  ℎ̅(𝑡) is the average 

value of the surfaces height at a given instant of time 𝑡. 

Figure 1 represents a schematic deposition, in (1+1) dimensions, in which (1+1) means one 

spatial dimension plus one-time dimension. One can see that  ℎ̅(𝑡) and 𝜔(𝐿, 𝑡) are also represented. 

 
Figure 1: Graphic representation of the cross section of a surface. One can see in the figure the average  

height  ℎ̅(𝑡) and the definition of surface roughness 𝜔(𝐿, 𝑡). 

 

In both cases, by scaling concepts, one can study and characterize a growth model that represents 

in some sense a real surface growth process. The surface roughness increases as a power of time 

initially 𝜔(𝐿, 𝑡) ~ 𝑡𝛽, and, after some time of deposition, 𝑡𝑥, the roughness 

saturates,  𝜔𝑠𝑎𝑡(𝐿) ~ 𝑡𝛼. The time necessary to saturation depends on the system size, 𝑡𝑥 ~ 𝐿𝑧. 

These exponents are not independent and they are related in the form 𝑧 = 𝛼/𝛽 [20]. In theoretical 

studies of surface growth, one is interested in the calculation of these scaling exponents. 

3. A MODEL FOR ANGULAR PARTICLE AGGREGATION 

In the present study, particles with size of one lattice unit are randomly dropped over the initially 

flat substrate. The difference between our model and the classic Random Deposition Model is that 

in our model particles are added obliquely to the substrate, in different angles of deposition, 

introducing a natural correlation among the first neighbors, reflecting a lateral growth of the 

surface.  

The particles are released from a randomly chosen position, far from the surface, with a desired 

angle in relation to the substrate, following a trajectory until reaches the surface, whereupon they 

are deposited in the landing point. In order to make the model closer to real deposition processes, 

such as the colloidal aggregation or the vapor deposition, we introduce a deviation of ± 10% in the 

values of the deposition angle, which defines the trajectories of the particles. 

A schematic representation of our model in figure 2, in which one can see the aggregation of 

particles leading to a lateral surface growth. This lateral growth is observed in real growth processes 

such as the electrochemical deposition and it is also observed in corrosion and oxidation processes 

in which the correlations among positions on the surface play an important role on the complex 

surface morphology. 

   

Figure 2: Illustration of the growth process of our model where particles are dropped with an angle θ 
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We perform Monte Carlo simulations to study the surface growth in a variety of linear lattices 

sizes and angles of deposition. In our simulations we select at random a position on the substrate 

and dropped a single particle following the angle θ. The deposition angle θ remains constant during 

the simulations. The particle is aggregated to the surface in the lowest position in relation the 

trajectory represented by the dashed line in the Figure 2. All the particles have one unit height and 

the surface where the particles are added are increased by on unit. 

The most important difference between this model and the simple random deposition model is 

that the present model naturally allows for correlations among the columns, since the particles are 

not dropped only vertically to the substrate, but with a deposition angle θ. The effects of the 

inclusion the this angle are studied by the means of the Monte Carlo simulations by adding identical 

particles over an initial flat surface. 

For the computer simulations, we define one Monte Carlo step as the unit of time in this problem, 

which is the time required to deposit 𝐿 (the linear size of the one-dimensional substrate) particles 

on the substrate. For each instant of time t (Monte Carlo Step) we calculated the average height 

 ℎ̅(𝑡) and the surface roughness 𝜔(𝐿, 𝑡) to study the surface’s evolution. All the results are average 

of 100 different simulations and the simulation time was defined as 50 times the surface size L, 

more than the sufficient to the system reaches a steady state. In this study, we define that particles 

are not allowed to diffuse after the deposition. 

4. RESULTS AND DISCUSSION 

Our Monte Carlo simulations were performed on squared lattices with linear size ranging from 

𝐿 = 128 to 4096 and with different angles of deposition between 0° ≤ 𝜃 ≤ 45°. At initial time steps, 

the growth is close to a surface generated by a RD model. However, as the time goes by, the lateral 

growth take place and the surface morphology change drastically, as one can see in Figure 3, the 

log-log plot of the roughness versus time. This figure shows the simulation results for averages 

taken from 100 different samples and 𝜃 = 45° for three different values of lattice sizes. 

 

 
Figure 3: Log-log plot of the surface roughness versus time for different lattice sizes. 

A cross section of a surface generated by our simulation in shown in the Figure 4, as one can see 

that the lateral aggregation of particles as the growth process evolve. The deposition angle guides 

the surface growth, as shown by the slight deviation to the left in the figure. 
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Figure 4: Graphic representation of the deposition process in one dimension and linear size L = 1024. The 

particles are dropped with angle θ = 45°. 

From our simulations, we obtained the value of the exponents 𝛼 and 𝛽 for different values of 𝜃. 

The roughness exponent 𝛼, in our model, do not depends on the angle of deposition for 𝜃 ≥ 20°. 
The best value of 𝛼, can be estimated from the 𝜔𝑠𝑎𝑡 after the extrapolation the effective exponents 

defined by the equation [21]  

 

𝛼(𝐿) ≡
𝑙𝑛[𝜔𝑠𝑎𝑡(𝐿)/𝜔𝑠𝑎𝑡(𝐿/2)]

𝑙𝑛2
.     (2) 

 

We found the best estimative for the roughness exponent was 𝛼 ≈ 0.157 ± 0.001. This 

estimative is valid for 𝜃 ≥ 20°. The plot of 𝛼 as function of the inverse of the lattice size is 

presented in the figure 5. 

Regarding to the growth exponent, as one can see in the figure 6, as the value of 𝜃 increases, the 

exponent 𝛽 decreases from 1/2 when 𝜃 = 0 and becomes closer to the expected value of 1/3 for the 

Ballistic Deposition Model, when 𝜃 = 45°. For 𝜃 ≥ 45°, the value of 𝛽 increases. For the small 

lattices we obtain higher fluctuations, which is observed for 𝜃 = 45° in the figure 6 for 𝐿 ≤ 512, 

where our results do not have a good agreement with the theoretical results. However, for the largest 

substrates, the simulations have a very good agreement with the expected value of 1/3. 

 

We also analyze our model by means of a stochastic growth equation, in the same form presented 

in equation 1. The evolution of the average height of the surface can be described as 
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Figure 5: Roughness exponent α as function of  𝐿−1 for different angles of deposition. According to our 

computer simulations, the best fit we found was 𝛼 ≈ 0.157 for large values of 𝐿. 

 
𝜕ℎ (𝑟,𝑡)

𝜕𝑡
= 𝐹 + 𝑆(𝑓)     (3) 

 

where 𝐹 represents the average number of particles added to the surface and 𝑆(𝑓)represents the 

random fluctuation of this process, and in this model, a pink noise that will introduce a correlation 

among the positions on the substrate. The noise has the form 

 

𝑆(𝑓) = (𝐴 + 𝐵𝑖)𝑓−𝛾      (4) 

 

where 𝐴 and 𝐵 are arbitrary constants, 𝑖 is the imaginary unit, 𝑓 is the noise frequency and the 

exponent 0 ≤ 𝛾 ≤ 2 is usually close to 1.  

With the appropriated chosen of the constants and using 𝛾 = 2/3 , the function 𝑆(𝑓) became 

 

𝑆(𝑓) =
(−1)5/6√

𝛱

2
 (𝑠𝑔𝑛 (𝑓)−1)

𝛤(
1

3
)𝑓2/3

      (5) 

 

using the 𝑠𝑔𝑛 function and the Gamma function, 𝛤. As the stochastic equation is a function of time, 

we use an inverse Fourier transformation in the noise to transform this function from  

 



A.C.A. Vilas Boas; F.L. Forgerini, Scientia Plena 13, 114801 (2017)                                           7 

 

 

Figure 6: Values of the growth exponent β as function of the deposition angle θ, for different systems sizes. 

the domain of frequency to the time domain. Using the inverse Fourier transformation, 

 

ℱ(𝑆) =  Φ (r⃗, 𝑡) = 𝐶 
1

𝑡1/3 + 𝐷     (6) 

 

where 𝑡 is time and 𝐶 and  𝐷 are constants. By integration of Φ (r⃗, 𝑡) from 0 to 𝑡, one can write 

‹ℎ(r⃗, 𝑡)›, ‹ℎ²› and ‹ℎ›² as 

 

‹ℎ(r⃗, 𝑡)› = 𝐷𝑡 + ∫ Φ (r⃗, 𝑡) 𝑑𝑡
𝑡

0
=  𝐷𝑡2/3    (7) 

 

which leads to 

 

‹ℎ›² =  𝐷²𝑡4/3.                                 (8) 

 

 

Using the definition of the surface roughness,  

 

 𝜔2(𝑡) =  ‹ℎ²› −  ‹ℎ›²,                    (9) 

 

𝜔2(𝑡) = 𝐶 𝑡2/3 ⇒ 𝜔(𝑡) = 𝐶 𝑡1/3                                      (10) 

 

and the growth exponent 𝛽 = 1/3, the expected value for the Ballistic Deposition. The roughness 

exponent 𝛼 cannot be obtained analytically by using the equation 1, since the simple equation used 

in this work does not depend on the height ℎ. Only through Monte Carlo simulations, for our model, 

we can obtain the exponent 𝛼. 
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5. CONCLUSIONS AND FURTHER REMARKS 

We studied the surface growth due to the deposition of particles dropped at random with different 

angles of deposition over a liner square lattice using computer simulations and stochastic 

differential equations. Our model is a modification of the simple RD model in an attempt to make 

it closer to real deposition processes. 

We showed that the surface roughness evolves in time with different behavior, even when 𝜃 ≠
0. At initial times, the roughness behaves as in the RD model and 𝛽 = 0.5. At long deposition 

times, the surface roughness grows slowly and the exponent 𝛽 ≈ 0.33. From our Monte Carlo 

simulations, we changed the angle of deposition and we showed that when 𝜃 ≠ 45°  and the size 

of the system is large enough, the growth exponent is 𝛽 = 1/3. 

From our calculations, one can see that the same result from the simulations was obtained by a 

stochastic equation, using a proper noise - the pink noise - to describe the interface growth and its 

evolution. 
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